Categorical Equivalence Between $$\varvec{PMV}_{\varvec{f}}$$ PMV f -Product Algebras and Semi-Low $$\varvec{f}_{\varvec{u}}$$ f u -Rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivalence of F-Algebras and Cubic Forms

We study the isomorphism problem of two “natural” algebraic structures – F-algebras and cubic forms. We prove that the F-algebra isomorphism problem reduces in polynomial time to the cubic forms equivalence problem. This answers a question asked in [AS05]. For finite fields of the form 3 6 |(#F − 1), this result implies that the two problems are infact equivalent. This result also has the follo...

متن کامل

f-DERIVATIONS AND (f; g)-DERIVATIONS OF MV -ALGEBRAS

Recently, the algebraic theory of MV -algebras is intensively studied. In this paper, we extend the concept of derivation of $MV$-algebras and we give someillustrative examples. Moreover, as a generalization of derivations of $MV$ -algebraswe introduce the notion of $f$-derivations and $(f; g)$-derivations of $MV$-algebras.Also, we investigate some properties of them.

متن کامل

Generalized f-clean rings

In this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. Next, we investigate some properties of such rings. We prove that $M_n(R)$ is n-f-clean for any n-f-clean ring R. We also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.

متن کامل

Categorical equivalence of some algebras

We show that two lattices are categorically equivalent if and only if they are isomorphic or dually isomorphic. Two normal bands are categorically equivalent if and only if they are isomorphic or antiisomorphic. The same result holds for finite bands as well. We also obtain corollaries for rectangular bands and semilattices.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Logica

سال: 2018

ISSN: 0039-3215,1572-8730

DOI: 10.1007/s11225-018-9832-6